
Spark	Basics	1
This	notebook	introduces	two	fundamental	objects	in	Spark:

The	Spark	Context

The	Resilient	Distributed	DataSet	or	RDD

Processing math: 100%



Spark	Context
We	start	by	creating	a	SparkContext	object	named	sc.	In	this	case	we
create	a	spark	context	that	uses	4	executors	(one	per	core)

In [1]: from pyspark import SparkContext
sc = SparkContext(master="local[4]")
sc

Out[1]: <pyspark.context.SparkContext at 0x108284a90>



Only	one	sparkContext	at	a	time!

When	you	run	spark	in	local	mode,	you	can	have	only	a	single	context	at	a
time.	Therefor,	if	you	want	to	use	spark	in	a	second	notebook,	you	should
first	stop	the	one	you	are	using	here.	This	is	what	the	method	.stop()	is
for.

In [2]: # sc.stop() #commented out so that you don't stop your context by mistake



RDDs
RDD	(or	Resilient	Distributed	DataSet)	is	the	main	novel	data	structure
in	Spark.	You	can	think	of	it	as	a	list	whose	elements	are	stored	on	several
computers.



Some	basic	RDD	commands



Parallelize

Simplest	way	to	create	an	RDD.
The	method	A=sc.parallelize(L),	creates	an	RDD	named	A	from

list	L.

A	is	an	RDD	of	type	ParallelCollectionRDD.

In [3]: A=sc.parallelize(range(3))
A

Out[3]: ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:423



Collect

RDD	content	is	distributed	among	all	executors.
collect()	is	the	inverse	of	`parallelize()'

collects	the	elements	of	the	RDD
Returns	a	list

In [4]: L=A.collect()
print type(L)
print L

<type 'list'>
[0, 1, 2]



Using	.collect()	eliminates	the	benefits	of	parallelism

It	is	often	tempting	to	.collect()	and	RDD,	make	it	into	a	list,	and	then

process	the	list	using	standard	python.	However,	note	that	this	means
that	you	are	using	only	the	head	node	to	perform	the	computation	which
means	that	you	are	not	getting	any	benefit	from	spark.

Using	RDD	operations,	as	described	below,	will	make	use	of	all	of	the
computers	at	your	disposal.



Map

applies	a	given	operation	to	each	element	of	an	RDD
parameter	is	the	function	defining	the	operation.
returns	a	new	RDD.
Operation	performed	in	parallel	on	all	executors.
Each	executor	operates	on	the	data	local	to	it.

In [5]: A.map(lambda x: x*x).collect()

Out[5]: [0, 1, 4]



Reduce

Takes	RDD	as	input,	returns	a	single	value.
Reduce	operator	takes	two	elements	as	input	returns	one	as
output.
Repeatedly	applies	a	reduce	operator
Each	executor	reduces	the	data	local	to	it.
The	results	from	all	executors	are	combined.



The	simplest	example	of	a	2-to-1	operation	is	the	sum:

In [6]: A.reduce(lambda x,y:x+y)

Out[6]: 3



Here	is	an	example	of	a	reduce	operation	that	finds	the	shortest	string	in
an	RDD	of	strings.

In [7]: words=['this','is','the','best','mac','ever']
wordRDD=sc.parallelize(words)
wordRDD.reduce(lambda w,v: w if len(w)<len(v) else v)

Out[7]: 'is'



Properties	of	reduce	operations

Reduce	operations	must	not	depend	on	the	order

Order	of	operands	should	not	matter
Order	of	application	of	reduce	operator	should	not
matter

Multiplication	and	summation	are	good:

                1 + 3 + 5 + 2                      5 + 3 + 1 + 2



Division	and	subtraction	are	bad:
                    1 - 3 - 5 - 2                      1 - 3 - 5 - 2



In [5]:

Which	of	these	the	following	orders	was	executed?

or

B=sc.parallelize([1,3,5,2])
B.reduce(lambda x,y: x-y)

((1 − 3) − 5) − 2

(1 − 3) − (5 − 2)

Out[5]: -9



Using	regular	functions	instead	of	lambda	functions

lambda	function	are	short	and	sweet.
but	sometimes	it's	hard	to	use	just	one	line.
We	can	use	full-fledged	functions	instead.

In [6]: A.reduce(lambda x,y: x+y)

Out[6]: 3



Suppose	we	want	to	find	the

last	word	in	a	lexicographical	order
among
the	longest	words	in	the	list.

We	could	achieve	that	as	follows

In [8]: def largerThan(x,y):
    if len(x)>len(y): return x
    elif len(y)>len(x): return y
    else:  #lengths are equal, compare lexicographically
        if x>y: 
            return x
        else: 
            return y
        
wordRDD.reduce(largerThan)

Out[8]: 'this'


